Heat shock factor 1-deficient mice exhibit decreased recovery of hearing following noise overstimulation.

نویسندگان

  • Damon A Fairfield
  • Margaret I Lomax
  • Gary A Dootz
  • Shu Chen
  • Andrzej T Galecki
  • Ivor J Benjamin
  • David F Dolan
  • Richard A Altschuler
چکیده

Heat shock proteins (Hsps) can enhance cell survival in response to stress. Heat shock factor 1 (Hsf1) is the major transcription factor that regulates stress-inducible Hsp expression. We previously demonstrated the presence of Hsf1 in the rodent cochlea and also demonstrated that a heat shock known to precondition the cochlea against noise trauma results in Hsf1 activation in the rodent cochlea. In the present study, we used an Hsf1-deficient (Hsf1-/- mouse model to determine whether eliminating the Hsf1-dependent stress pathway would influence hearing loss and/or recovery from a moderate-intensity noise. Hsf1-/- mice and their normal littermates (Hsf1+/+) were exposed to a 98-dB, broadband (2-20 kHz) noise for 2 hr, and auditory brainstem response thresholds were measured at three frequencies (4, 12, and 20 kHz) 3 hr, 3 days, and 2 weeks after noise. Hsf1-/- mice had greater hearing loss than Hsf1+/+ mice, with significant differences in recovery observed at all frequencies tested by 2 weeks after noise. Increased outer hair cell loss was also observed in Hsf1-/- mice following noise. These studies provide evidence for the importance of Hsf1 in cochlear protection, recovery, and/or repair following noise overstimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST.

Acoustic overstimulation is one of the major causes of hearing loss. Glutamate is the most likely candidate neurotransmitter for afferent synapses in the peripheral auditory system, so it was proposed that glutamate excitotoxicity may be involved in noise trauma. However, there has been no direct evidence that noise trauma is caused by excessive release of glutamate from the inner hair cells (I...

متن کامل

Toll-like receptor 4 mediates tolerance in macrophages stimulated with Toxoplasma gondii-derived heat shock protein 70.

Peritoneal macrophages (PMs) from toll-like receptor 4 (TLR4)-deficient and wild-type (WT) mice were responsive to recombinant Toxoplasma gondii-derived heat shock protein 70 (rTgHSP70) and natural TgHSP70 (nTgHSP70) in NO release, but those from TLR2-, myeloid differentiation factor 88 (MyD88)-, and interleukin-1R-associated kinase 4 (IRAK4)-deficient mice were not. Polymyxin B did not inhibit...

متن کامل

Detection of HSP 72 synthesis after acoustic overstimulation in rat cochlea.

The purpose of this study was to determine if high intensity acoustic stimulation would induce HSP 72 in rat cochlea. The animals were exposed to 110 dB SPL broad band noise for 1.5 h and sacrificed 4, 6 and 8 h after stimulation. Immunocytochemistry and western blotting were used to detect the expression of HSP 72 in the cochlear tissues. Western blots showed an intense 72 kD band in the noise...

متن کامل

Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin

Various cochlear pathologies, such as acoustic trauma, ototoxicity and age-related degeneration, cause hearing loss. These pre-existing hearing losses can alter cochlear responses to subsequent acoustic overstimulation. So far, the knowledge on the impacts of pre-existing hearing loss caused by genetic alteration of cochlear genes is limited. Prestin is the motor protein expressed exclusively i...

متن کامل

Heat Shock Factor 1 Contributes to Ischemia-Induced Angiogenesis by Regulating the Mobilization and Recruitment of Bone Marrow Stem/Progenitor Cells

Bone marrow (BM)-derived stem/progenitor cells play an important role in ischemia-induced angiogenesis in cardiovascular diseases. Heat shock factor 1 (HSF1) is known to be induced in response to hypoxia and ischemia. We examined whether HSF1 contributes to ischemia-induced angiogenesis through the mobilization and recruitment of BM-derived stem/progenitor cells using HSF1-knockout (KO) mice. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 81 4  شماره 

صفحات  -

تاریخ انتشار 2005